教材把指数函数.对数函数.幂函数当作三种重要的函数模型来学习.强调通过实例和图象的直观.揭示这三种函数模型增长的差异及其关系.体会建立和研究一个函数模型的基本过程和方法.学会运用具体函数模型解决一些实际问题.1. 了解指数函数模型的实际背景. 查看更多

 

题目列表(包括答案和解析)

我们知道,(0<a≠1)与(0<a≠1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x+1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>

我们知道,(0a1)(0a1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>

某商场经营一批进价为12元/个的小商品.在4天的试销中,对此商品的单价x(元)与相应的日销量y(个)作了统计,其数据如表
x 16 20 24 28
y 42 30 18 6
(1)能否找到一种函数,使它反映y关于x的函数关系?若能,写出函数解析式;(提示:可根据表格中的数据描点后观察,再从一次函数,二次函数,指数函数,对数函数等中选择)
(2)设经营此商品的日销售利润为P(元),求P关于x的函数解析式,并指出当此商品的销售价每个为多少元时,才能使日销售利润P取最大值?最大值是多少?

查看答案和解析>>

如果一个函数的定义域是值域的真子集,那么称这个函数为“思法”函数.
(1)判断指数函数、对数函数是否为思法函数,并简述理由;
(2)判断幂函数y=xα(α∈Q)是否为思法函数,并证明你的结论;
(3)已知ft(x)=ln(x2+2x+t)是思法函数,且不等式2t+1+3t+1≤k(2t+3t)对所有的ft(x)都成立,求实数k的取值范围.

查看答案和解析>>

关于x的方程x+2x=2,x+log2x=2的解分别为α、β,根据指数函数和对数函数的图象,α+β=
 

查看答案和解析>>


同步练习册答案