(一)创设情景.揭示课题 引例:大约在一千五百年前.大数学家孙子在中记载了这样的一道题:“今有雏兔同笼.上有三十五头.下有九十四足.问雏兔各几何? 这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼 问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚.则每只鸡和兔就变成了“独脚鸡 和“双脚兔 . 这样.“独脚鸡 和“双脚兔 脚的数量与它们头的数量之差.就是兔子数.即:47-35=12,鸡数就是:35-12=23. 比例激发学生学习兴趣.增强其求知欲望. 可引导学生运用方程的思想解答“鸡兔同笼 问题. 查看更多

 

题目列表(包括答案和解析)

精英家教网(1)求右焦点坐标是(2,0),且经过点(-2,-
2
)的椭圆的标准方程.
(2)已知椭圆C的方程是
x2
a2
+
y2
b2
=1(a>b>0).设斜率为k的直线l交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上.
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.

查看答案和解析>>

精英家教网如图揭示了一个由区间(0,1)到实数集R上的对应过程:区间(0,1)内的任意实数m与数轴上的线段AB(不包括端点)上的点M一一对应(图一),将线段AB围成一个圆,使两端A,B恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1)(图三).图三中直线AM与x轴交于点N(n,0),由此得到一个函数n=f(m),则下列命题中正确的序号是(  )
(1)f(
1
2
)=0;     
(2)f(x)是偶函数;   
(3)f(x)在其定义域上是增函数;
(4)y=f(x)的图象关于点(
1
2
,0)对称.
A、(1)(3)(4)
B、(1)(2)(3)
C、(1)(2)(4)
D、(1)(2)(3)(4)

查看答案和解析>>

(2012•泉州模拟)定义一种运算S=a?b,在框图所表达的算法中揭示了这种运算“?”的含义.那么,按照运算“?”的含义,计算tan15°?tan30°+tan30°?tan15°=
1
1

查看答案和解析>>

(I)已知椭圆C的方程是
x2
a2
+
y2
b2
=1(a>b>0)
,设斜率为k的直线l,交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上;
(Ⅱ)利用(I)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.

查看答案和解析>>

定义一种运算,在框图所表达的算法中揭示了这种运算“”的含义.那么,按照运算“”的含义,计算    

 

 

查看答案和解析>>


同步练习册答案