(三)归纳小结.巩固提高. 通过以上三题的练习.师生共同总结出了利用拟合函数解决实际问题的一般方法.指出函数是描述客观世界变化规律的重要数学模型.是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下: 用函数模型解决实际问题在于 选择函数模型 求函数模型 画散点图 收集数据 符合 实际 不符合实际 查看更多

 

题目列表(包括答案和解析)

已知两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点.由此可归纳n条直线最多交点个数为
 

查看答案和解析>>

用反证法证明命题:“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;
②所以假设错误,即直线AC、BD也是异面直线;
③假设直线AC、BD是共面直线;
则正确的序号顺序为(  )

查看答案和解析>>

选修1-2包含四章内容:统计案例、框图、推理与证明、复数.统计案例一章有两个单元:回归分析、独立性检验,而回归分析这个单元有三个小节:回归分析、相关系数、可线性化的回归分析.推理与证明一章有四个单元:归纳与类比、数学证明、综合法与分析法、反证法.复数一章包含两个单元:数系的扩充与复数的引入、复数的四则运算,其中复数的四则运算有两个小节:复数的加法与减法、复数的乘法与除法.请你根据以上叙述画出选修1-2的知识结构图.

查看答案和解析>>

列三角形数表
1-----------第一行
2    2-----------第二行
3   4    3-----------第三行
4   7    7   4-----------第四行
5   11  14  11   5


假设第n行的第二个数为an(n≥2,n∈N*
(1)依次写出第六行的所有数字;
(2)归纳出an+1与an的关系式并求出an的通项公式.

查看答案和解析>>

(1)18世纪的时候,欧拉通过研究,发现凸多面体的面数F、顶点数V和棱数E满足一个等式关系.请你研究你熟悉的一些几何体(如三棱锥、三棱柱、正方体…),归纳出F、V、E之间的关系等式:
V+F-E=2
V+F-E=2

(2)运用你得出的关系式研究如下问题:一个凸多面体的各个面都是三角形,则它的面数F可以表示为顶点数V的函数,此函数关系式为
F=2V-4
F=2V-4

多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥 4 4 6
三棱柱 5 6
正方体

查看答案和解析>>


同步练习册答案