[福建省政和二中2009届高三数学第四次月考试卷第11题] 数列项和为 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

(2012•河北模拟)已知数列{an}的前n项和Sn=2-an,数列{bn}满足b1=1,b3+b7=18.且bn+1+bn-1=2bn(n≥2).
(I)数列{an}和{bn}的通项公式.
(II)若bn=an•cn,求数列{cn}的前n项和Tn

查看答案和解析>>

已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2

查看答案和解析>>

已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的标准方程.

查看答案和解析>>

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组 [100,110] [110,120] [120,130] [130,140] [140,150]
人数 4 8 x 5 3
表2:
生产能力分组 [110,120] [120,130] [130,140] [140,150]
人数 6 y 36 18
(i)先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
精英家教网
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>


同步练习册答案