精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2
分析:先根据前2006项的和S2006=2008,其中所有的偶数项的和是2,求得所有奇数项的和,则可求得a1+a2005的值,再用等差数列的性质求得a1003
解答:解:∵等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,
∴所有奇数项的和为2006,
∵a1+a2005=2a1003
1003×a1003=2006
∴a1003=2
故答案为:2
点评:本题主要考查了等差数列的前n项和,以及等差数列的性质,同时考查了转化的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案