点拨:本题第二问的求和方法.脱胎于教材上等比数列前项公式的推导方法.是近年来高考数列试题中考查最多的一个地方.在复习中一定要熟练的掌握. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
a
b
,其中
a
=(2cosx,
3
sinx),
b
=(cosx,-2cosx)

(1)若x∈[0,π],求函数f(x)的单调递增区间和最小值;
(2)在△ABC中,a、b、c分别是角A.B.C的对边,旦f(A)=-1,求
b-2c
acos(60°+C)
的值;
(3)在第二问的条件下,若a=
3
,求△ABC面积的最大值.

查看答案和解析>>

已知直线m的参数方程
x=
t
a2+1
y=2+
at
a2+1
(t为参数,a∈R),圆C的参数方程为
x=2cosθ
y=3+2sinθ
(θ为参数)
(1)试判断直线m与圆C的位置关系,并说明理由;
(2)当a=-
1
3
时,求直线m与圆C的相交弦长;
(3)在第二问的条件下,若有定点A(-1,0),过点A的动直线l与圆C交于P,Q两点,M是P,Q的中点,l与m交于点N,探究
AM•
AN
是否与直线l的倾斜角有关,若无关,请求出定值,若有关,请说明理由.

查看答案和解析>>

.(本小题12分)
已知数列分别是等差、等比数列,且.
①求数列的通项公式;
②设为数列的前项和,求的前项和
③设,请效仿②的求和方法,求.

查看答案和解析>>

记等差数列,利用倒序相加法的求和办法,可将表示成首项,末项与项数的一个关系式,即;类似地,记等比数列项积为,类比等差数列的求和方法,可将表示为首项与项数的一个关系式,即公式=         

 

查看答案和解析>>

记等差数列,利用倒序相加法的求和办法,可将表示成首项,末项与项数的一个关系式,即;类似地,记等比数列项积为,类比等差数列的求和方法,可将表示为首项与项数的一个关系式,即公式=         

 

查看答案和解析>>

 

一、选择题

1. D

解析:∵a3+a7+a11=3a7为常数,

∴S13==13a7,也是常数.

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A

4.D  数列是以2为首项,以为公比的等比数列,项数为故选D。

5.B

6. D

解析:当q=1时,Sn,Sn+1,Sn+2构成等差数列;

当q=-2时,Sn+1,Sn,Sn+2构成等差数列;

当q=-时,Sn,Sn+2,Sn+1构成等差数列.

7.A   仅②不需要分情况讨论,即不需要用条件语句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依题意可得.

11.B,指输入的数据.

12.D 

(法一)辗转相除法:         

的最大公约数.

(法二)更相减损术:

        

        ∴的最大公约数.

二、填空题

13.

14.

时,是正整数。

15.

解析:bn===a1,bn+1=a1,=(常数).

16.-6

三、解答题

17.解(1)

     

      以3为公比的等比数列.

 (2)由(1)知,..

      不适合上式,

       .

18.解:(1)an=    (2).

19.解:(1)

(2)由(1)得,假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则

,得

∴p=r,矛盾.  ∴数列{bn}中任意三项都不可能成等比数列.

20.解:设未赠礼品时的销售量为a0个,而赠送礼品价值n元时销售量为an个,

又设销售利润为数列

考察的单调性,

当n=9或10时,最大

答:礼品价值为9元或10元时商品获得最大利润.

 

21.解析:(1)时,

两式相减:

故有

数列为首项公比的等比数列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首项为149,公差为-3的等差数列.  

当n≤50时,

当51≤n≤100时,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴综上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步练习册答案