题目列表(包括答案和解析)
(本小题满分12分)
某大学高等数学老师上学期分别采用了
两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:
![]()
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的
列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
|
|
甲班 |
乙班 |
合计 |
|
优秀 |
|
|
|
|
不优秀 |
|
|
|
|
合计 |
|
|
|
下面临界值表仅供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
其中
)
(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记
为这2人所得的总奖金,求
的分布列和数学期望。
| (x-a)2+(y-b)2 |
| x2+8x+20 |
| x2-2x+2 |
| 26 |
(本小题满分12分)
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x (单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件。
(1)将一个星期的商品销售利润表示成x的函数
;
(2)如何定价才能使一个星期的商品销售利润最大?
(本小题满分12分)
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件
(1)将一个星期的商品销售利润表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
一、选择题
1. D
解析:∵a3+a7+a11=3a7为常数,
∴S13=
=13a7,也是常数.
2. C
解析:∵易知q≠1,S6∶S3=1∶2
=
,q3=-
,
∴S9∶S3=
=1+q3+q6=1-
+(-
)2=
.
3.A
,
又


4.D 数列
是以2为首项,以
为公比的等比数列,项数为
故选D。
5.B
6. D
解析:当q=1时,Sn,Sn+1,Sn+2构成等差数列;
当q=-2时,Sn+1,Sn,Sn+2构成等差数列;
当q=-
时,Sn,Sn+2,Sn+1构成等差数列.
7.A 仅②不需要分情况讨论,即不需要用条件语句
8. D
9. D
解析:易知an=
∴a13+a23+…+an3=23+81+82+…+8n-1=8+
=
(8n-1+6).
10.A提示:依题意
可得.
11.B,
指输入的数据.
12.D
(法一)辗转相除法:

∴
是
和
的最大公约数.
(法二)更相减损术:

∴
是
和
的最大公约数.
二、填空题
13.

14. 

当
时,
是正整数。
15.
解析:bn=
=
=a1
,bn+1=a1
,
=
(常数).
16.-6
三、解答题
17.解(1)

以3为公比的等比数列.
(2)由(1)知,
.
.
不适合上式,
.
18.解:(1)an=
(2)
.
19.解:(1)
,
;
(2)由(1)得
,假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则
即
∴
,
,
,得
∴p=r,矛盾. ∴数列{bn}中任意三项都不可能成等比数列.
20.解:设未赠礼品时的销售量为a0个,而赠送礼品价值n元时销售量为an个,
,
又设销售利润为数列
,
当
,
考察
的单调性,

当n=9或10时,
最大
答:礼品价值为9元或10元时商品获得最大利润.
21.解析:(1)
时,
即
两式相减:
即
故有
。
数列
为首项
公比
的等比数列。

(2)
则

又
(3)
①
而
②
①-②得:

22.解:(1)b4=b1+3d 即11=2+3d,
∴b1=2,
b2=5, b3=8, b4=11,
b5=8, b6=5, b7=2;
(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=
;
(3)
,d100=2+3×49=149,∴d1, d2,…d50是首项为149,公差为-3的等差数列.
当n≤50时,
当51≤n≤100时,Sn=d1+d2+…d50=S50+(d51+d52+…dn)
=3775+(n-50)×2+
=
∴综上所述,
.
w.w.w.k.s.5.u.c.o.m

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com