题目列表(包括答案和解析)
解:因为有负根,所以
在y轴左侧有交点,因此![]()
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数
的分布列。
解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数
的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费
若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,
(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?
解:(Ⅰ)设
:![]()
,其半焦距为![]()
.则
:
.
由条件知
,得
.
的右准线方程为
,即
.
的准线方程为
.
由条件知
, 所以
,故
,
.
从而
:
,
:
.
(Ⅱ)由题设知
:
,设
,
,
,
.
由
,得
,所以
.
而
,由条件
,得
.
由(Ⅰ)得
,
.从而,
:
,即
.
由
,得
.所以
,
.
故
.
一、选择题:
1.C.提示:
.
2.A.提示:直接利用“更相减损术”原理逐步运算即可.
3.B.提示:
为实数,所以
.
4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:
,
当
时,解得
,不合题意;当
时,解得
,不合题意;
当
时,解得
,符合题意,所以当输入
的值为3时,输出
的值为8.
5.B.提示:由
为纯虚数得:
.由
,解得:
.因为
为第四象限角,所以
,则
,选B.
6.C.提示:此算法的功能为求解
当
取到第一个大于或等于
的值时,
的表达式中最后一项的值.
由
.所以
时,
.
此时
.
7.C.提示:令
,则
,∴
.
8.D.提示:框图的功能是寻找满足
的最小的自然数
,可解得,
,
所以
,则输出的
值为
.
9.D.提示:
,此复数的对应点为
,因为
,所以
,所以此复数的对应点在第四象限.
10.B.提示:设工序c所需工时数为x天,由题设关键路线是a→c→e→g.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.
11.A.提示:
,
,
……,所以
.
12.A.提示:根据题意可得:
,解得
.所以点
落在以
为端点的线段上,如右图.
表示线段
上的点到
的距离之和,显然当
共线时,和最小,此时,点
是直线
的交点,由图知,交点为
,所以
.
.
,当
时,
,
.
二、填空题
13.
,
.提示:这是一个当型循环结构,由条件可知判断的条件是:
;处理框所填的是:
.
14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.
15.
.提示:设方程的实根为
,代入方程得
,可化为
,所以有
,解得
,
所以
,所以其共轭复数为
.
16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.
三、解答题:
17.解:由题知平行四边形三顶点坐标为
,
设D点的坐标为
.
因为
,得
,
得
得
,即
,
所以
,则
对应的复数为
.
⑵因为
,所以复数
的对应点Z在以
为圆心,以2为半径的圆上,
则
的最大值为
.
18.解:


19.解:因为
,
,
所以,若
,则
,
消去
可得:
,
可化为
,则当
时,
取最小值
;当
时,
取最大值7.
所以
.
20.解:此程序的功能是求解函数
的函数值.
根据题意知
则当
且
时,
;当
且
时,
;
所以
,可以化为
,
当
时,
时,
有最小值
;当
时,则
时,
有最小值
.
因为
,所以所得
值中的最小值为1.
21.解:
,
所以
.因为
,所以
,
所以
,则
,即
的模的取值范围为
.
22.解:(1)算法的功能为:
(2)程序框图为:


⑶程序语句为:
;

;

;
;



w.w.w.k.s.5.u.c.o.m

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com