解:.因为所以.则.. 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

设人的某一特征(如眼睛大小)是由他一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性.纯显性与混合性的都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:

(1)1个孩子有显性决定特征的概率是多少?

(2)2个孩子中至少有一个显性决定的特征的概率是多少?

查看答案和解析>>

设人的某一特征(如眼睛大小)是由他一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:

(1)1个孩子有显性决定特征的概率是多少?

(2)2个孩子中至少有一个有显性决定的特征的概率是多少?

查看答案和解析>>

给出以下命题:
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)

(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

一、选择题:

1.C.提示:

2.A.提示:直接利用“更相减损术”原理逐步运算即可.

3.B.提示:为实数,所以

4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:

时,解得,不合题意;当时,解得,不合题意;

时,解得,符合题意,所以当输入的值为3时,输出的值为8.

5.B.提示:由为纯虚数得:.由,解得:.因为为第四象限角,所以,则,选B.

6.C.提示:此算法的功能为求解取到第一个大于或等于的值时,的表达式中最后一项的值.

.所以时,

此时

7.C.提示:令,则,∴

8.D.提示:框图的功能是寻找满足的最小的自然数,可解得,

所以,则输出的值为

9.D.提示:,此复数的对应点为,因为,所以,所以此复数的对应点在第四象限.

10.B.提示:设工序c所需工时数为x天,由题设关键路线是aceg.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.

11.A.提示:……,所以

12.A.提示:根据题意可得:,解得.所以点落在以为端点的线段上,如右图.表示线段上的点到的距离之和,显然当共线时,和最小,此时,点是直线的交点,由图知,交点为,所以

,当时,

二、填空题

13..提示:这是一个当型循环结构,由条件可知判断的条件是:;处理框所填的是:

14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.

15..提示:设方程的实根为,代入方程得,可化为,所以有,解得

所以,所以其共轭复数为

16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.

三、解答题:

17.解:由题知平行四边形三顶点坐标为

设D点的坐标为

因为,得

,即

所以,则对应的复数为

⑵因为,所以复数的对应点Z在以为圆心,以2为半径的圆上,

的最大值为

18.解:

19.解:因为

所以,若,则

消去可得:

可化为,则当时,取最小值;当时,取最大值7.

所以

20.解:此程序的功能是求解函数的函数值.

根据题意知

则当时,;当时,

所以,可以化为

时,时,有最小值;当时,则时,有最小值

因为,所以所得值中的最小值为1.

21.解:

所以.因为,所以

所以,则,即的模的取值范围为

22.解:(1)算法的功能为:

(2)程序框图为:

⑶程序语句为:

   

       

   

   

w.w.w.k.s.5.u.c.o.m

 


同步练习册答案