题目列表(包括答案和解析)
已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函数
的图象与
轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为
,令
,解得
,可知当极大值为
,极小值为
.由
,解得
,由
,解得
,所以
或
,选A.
函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
在点(ak,ak2)处的切线方程为:
当
时,解得
,
所以
。
A.由y=2x解得x=
,所以函数y=2x的反函数是x=![]()
B.由y=2x解得x=
,然后在x=
中将x、y交换,得到y=
,则函数y=
不是y=2x的反函数
C.有些函数没有反函数
D.因为x=
与y=
都可以称为y=2x的反函数,所以在同一坐标系中函数x=
与y=
的图象表示同一条直线
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
已知曲线C:
(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当
解得
,所以m的取值范围是![]()
(2)当m=4时,曲线C的方程为
,点A,B的坐标分别为
,
由
,得![]()
因为直线与曲线C交于不同的两点,所以![]()
即![]()
设点M,N的坐标分别为
,则![]()
![]()
直线BM的方程为
,点G的坐标为![]()
因为直线AN和直线AG的斜率分别为![]()
所以
![]()
![]()
即
,故A,G,N三点共线。
一、选择题:
1.C.提示:
.
2.A.提示:直接利用“更相减损术”原理逐步运算即可.
3.B.提示:
为实数,所以
.
4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:
,
当
时,解得
,不合题意;当
时,解得
,不合题意;
当
时,解得
,符合题意,所以当输入
的值为3时,输出
的值为8.
5.B.提示:由
为纯虚数得:
.由
,解得:
.因为
为第四象限角,所以
,则
,选B.
6.C.提示:此算法的功能为求解
当
取到第一个大于或等于
的值时,
的表达式中最后一项的值.
由
.所以
时,
.
此时
.
7.C.提示:令
,则
,∴
.
8.D.提示:框图的功能是寻找满足
的最小的自然数
,可解得,
,
所以
,则输出的
值为
.
9.D.提示:
,此复数的对应点为
,因为
,所以
,所以此复数的对应点在第四象限.
10.B.提示:设工序c所需工时数为x天,由题设关键路线是a→c→e→g.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.
11.A.提示:
,
,
……,所以
.
12.A.提示:根据题意可得:
,解得
.所以点
落在以
为端点的线段上,如右图.
表示线段
上的点到
的距离之和,显然当
共线时,和最小,此时,点
是直线
的交点,由图知,交点为
,所以
.
.
,当
时,
,
.
二、填空题
13.
,
.提示:这是一个当型循环结构,由条件可知判断的条件是:
;处理框所填的是:
.
14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.
15.
.提示:设方程的实根为
,代入方程得
,可化为
,所以有
,解得
,
所以
,所以其共轭复数为
.
16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.
三、解答题:
17.解:由题知平行四边形三顶点坐标为
,
设D点的坐标为
.
因为
,得
,
得
得
,即
,
所以
,则
对应的复数为
.
⑵因为
,所以复数
的对应点Z在以
为圆心,以2为半径的圆上,
则
的最大值为
.
18.解:


19.解:因为
,
,
所以,若
,则
,
消去
可得:
,
可化为
,则当
时,
取最小值
;当
时,
取最大值7.
所以
.
20.解:此程序的功能是求解函数
的函数值.
根据题意知
则当
且
时,
;当
且
时,
;
所以
,可以化为
,
当
时,
时,
有最小值
;当
时,则
时,
有最小值
.
因为
,所以所得
值中的最小值为1.
21.解:
,
所以
.因为
,所以
,
所以
,则
,即
的模的取值范围为
.
22.解:(1)算法的功能为:
(2)程序框图为:


⑶程序语句为:
;

;

;
;



w.w.w.k.s.5.u.c.o.m

湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com