又.若.则.由知. 查看更多

 

题目列表(包括答案和解析)

已知圆,直线过定点A(1,0).

(1)若与圆相切,求的方程;

(2)若与圆相交于P,Q两点,线段PQ的中点为M,又的交点为N,判断是否为定值,若是,则求出定值;若不是,请说明理由.

查看答案和解析>>

已知圆,直线过定点A(1,0).
(1)若与圆相切,求的方程;
(2)若与圆相交于P,Q两点,线段PQ的中点为M,又的交点为N,判断是否为定值,若是,则求出定值;若不是,请说明理由.

查看答案和解析>>

一个同学在解决“已知在△ABC中,若sinA=,cosB=,求cosC的值”这一问题时给出了下面的解题步骤:

由于sinA=,则cosA=±,又cosB=,则sinB=

所以cosC=cos[π-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB.

当cosA=时,cosC=;当cosA=-时,cosC=

综上可知cosC=或cosC=

这个同学的解题过程是否正确?

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

已知函数f(x)的定义域为[0,1],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).
(Ⅰ)已知函数f(x)=(x-
1
2
2,x∈[0,1],判断f(x)是否具有性质P(
1
3
),并说明理由;
(Ⅱ)已知函数 f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性质P(m),求m的最大值;
(Ⅲ)若函数f(x)的定义域为[0,1],且f(x)的图象连续不间断,又满足f(0)=f(1),求证:对任意k∈N*且k≥2,函数f(x)具有性质P(
1
k
).

查看答案和解析>>


同步练习册答案