由.解得.选D.点评:基本不等式在必修部分的要求就是两个正数的算术.几何平均值不等式.这个不等式的主要应用就是求一些函数或式子的最值.值得注意的是其使用条件.可以概括为“一正.二定.三相等 .在使用基本不等式求最值时.常数代换是经常使用的方法.要注意体会. 查看更多

 

题目列表(包括答案和解析)

已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函数的图象与轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为.由,解得,由,解得,所以,选A.

 

查看答案和解析>>

对某班级名学生学习数学与学习物理的成绩进行调查,得到如下表所示:

 

数学成绩较好

数学成绩一般

合计

物理成绩较好

18

7

25

物理成绩一般

6

19

25

合计

24

26

50

,解得

0.050

0.010

0.001

3.841

6.635

10.828

 

参照附表,得到的正确结论是(    )

(A)在犯错误的概率不超过的前提下,认为“数学成绩与物理成绩有关”

(B)在犯错误的概率不超过的前提下,认为“数学成绩与物理成绩无关”

(C)有的把握认为“数学成绩与物理成绩有关”

(D)有以上的把握认为“数学成绩与物理成绩无关”

 

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

已知正四棱柱ABCD- A1B1C1D1中 ,AB=2,CC1=  E为CC1的中点,则直线AC1与平面BED的距离为

A、2   B、  C、  D、1

【解析】连结交于点,连结,因为是中点,所以,且,所以,即直线 与平面BED的距离等于点C到平面BED的距离,过C做,则即为所求距离.因为底面边长为2,高为,所以,,,所以利用等积法得,选D.

 

查看答案和解析>>

已知正四棱柱中 ,的中点,则直线与平面的距离为

(A)              (B)           (C)           (D)

【解析】连结交于点,连结,因为是中点,所以,且,所以,即直线 与平面BED的距离等于点C到平面BED的距离,过C做,则即为所求距离.因为底面边长为2,高为,所以,,,所以利用等积法得,选D.

 

查看答案和解析>>


同步练习册答案