题目列表(包括答案和解析)
已知数列
满足
,![]()
(1)求证:数列
是等比数列;
(2)求数列
的通项和前n项和
.
【解析】第一问中,利用
,得到
从而得证
第二问中,利用∴
∴
分组求和法得到结论。
解:(1)由题得
………4分
……………………5分
∴数列
是以2为公比,2为首项的等比数列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
甲、乙两地相距400公里,汽车从甲地匀速行驶到乙地,速度不得超过c公里/小时(c是正常数).已知汽车每小时的运输成本(以元为单位)由可变部分t(元)和固定部分a(a>0)(元)组成.可变部分与速度v(单位:公里/小时)的平方成正比,且知以60公里/小时的速度行驶时,可变部分成本为900元.
(1)写出全程运输成本y与速度v之间的函数解析式;
(2)为了使全程运输成本y最小,汽车应以多大的速度行驶?
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
已知数列
满足
(I)求数列
的通项公式;
(II)若数列
中
,前
项和为
,且
证明:
![]()
【解析】第一问中,利用
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
第二问中,
![]()
进一步得到得
即![]()
即
是等差数列.
然后结合公式求解。
解:(I) 解法二、
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差数列.
![]()
![]()
![]()
![]()
已知数列
是首项为
的等比数列,且满足![]()
.
(1) 求常数
的值和数列
的通项公式;
(2) 若抽去数列
中的第一项、第四项、第七项、……、第
项、……,余下的项按原来的顺序组成一个新的数列
,试写出数列
的通项公式;
(3) 在(2)的条件下,设数列
的前
项和为
.是否存在正整数
,使得
?若存在,试求所有满足条件的正整数
的值;若不存在,请说明理由.
【解析】第一问中解:由
得
,,
又因为存在常数p使得数列
为等比数列,
则
即
,所以p=1
故数列
为首项是2,公比为2的等比数列,即
.
此时
也满足,则所求常数
的值为1且![]()
第二问中,解:由等比数列的性质得:
(i)当
时,
;
(ii) 当
时,
,
所以![]()
第三问假设存在正整数n满足条件,则
,
则(i)当
时,
![]()
,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com