解析:(1)且. 查看更多

 

题目列表(包括答案和解析)

函数是定义在上的奇函数,且

(1)求实数a,b,并确定函数的解析式;

(2)判断在(-1,1)上的单调性,并用定义证明你的结论;

(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)

【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且

解得

(2)中,利用单调性的定义,作差变形判定可得单调递增函数。

(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,

解:(1)是奇函数,

………………2分

,又

(2)任取,且

,………………6分

在(-1,1)上是增函数。…………………………………………8分

(3)单调减区间为…………………………………………10分

当,x=-1时,,当x=1时,

 

查看答案和解析>>

已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:

查看答案和解析>>

已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:

查看答案和解析>>

已知集合A=

,求的值。

【解析】本试题主要考查了集合的交集,并集的运算综合运用。

利用已知条件先求解A,B,C集合,然后利用集合的运算表示出a,b的值。

解:

 

查看答案和解析>>

定义在R上的函数及二次函数满足:

1)求的解析式;

2

3)设,讨论方程的解的个数情

 

查看答案和解析>>


同步练习册答案