精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:

(1),(2),(3)详见解析

解析试题分析:(1)本题中的参数为,利用导函数构造关于的方程. 因为,所以,故,(2)不等式恒成立问题,往往转化为最值问题,即,本题实质求函数上最大值. 因为,所以,因此当时单调增,当时单调减,所以当时,,从而.(3)证明不等式先要观察其结构特点,原不等式结构虽对称,但不可分离,需要适当变形.利用,将原不等式等价变形为,即
利用(II)结论
=0
试题解析:(1)解:因为,所以
,得,所以。              3分
(2)解:设
,令,解得
变化时,的变化情况如下表:


(0,1)
1



0



极大值

所以当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;   
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求的单调递增区间;
(2)若曲线轴相切于异于原点的一点,且的极小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值;
(2)设函数若函数上恰有两个不同零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中),,已知它们在处有相同的切线.
(1)求函数的解析式;
(2)求函数上的最小值;
(3)若对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3ax-1
(1)若f(x)在实数集R上单调递增,求a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减,若存在,求出a的取值范围;若不存在,说明理由;
(3)证明f(x)=x3ax-1的图象不可能总在直线ya的上方.

查看答案和解析>>

同步练习册答案