精英家教网 > 高中数学 > 题目详情

设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;   
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.

(1)见解析(2)>e22(3)a的取值范围是:2-ln4<a≤3-ln9,即2-2ln2<a≤3-2ln3

解析试题分析:(1)确定函数定义域,求导函数,利用导数的正负,可得f(x)的单调区间;
(2)确定函数在上的单调性,从而可得函数的最大值,不等式,即可求得实数m的取值范围;
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,记g(x)=x-a+1-ln(1+x)2.求导函数,确定函数在区间[0,2]上的单调性,为使f(x)=x2+x+a在[0,2]上恰好有两个相异的实根,只须g(x)=0在[0,1]和(1,2]上各有一个实根,从而可建立不等式,由此可求实数a的取值范围.
试题解析:依题意知
又因为            1分
(1)令
或x>0,所以f(x)的单调增区间为(-2,-1)和(0,+∞)   3分

的单调减区间(1,0)和(∞,2)    5分
(2)令(舍)            6分
           8分
因此可得:f(x)<恒成立时,>e22                        9分
(3)原题可转化为方程=(1+x)-ln(1+x)2在区间[0,2]上恰好有两个相异实根 10分

11分


且2-ln4<3-ln9<1,∴的最大值是1,的最小值是2-ln4    13分
所以在区间[0,2]上原方程恰有两个相异的实根时,实数a的取值范围是:2-ln4<a≤3-ln9,即2-2ln2<a≤3-2ln3                14分
考点:1.利用导数研究函数的单调性;2.函数与方程的综合运用;3.利用导数求闭区间上函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

二次函数,它的导函数的图象与直线平行.
(1)求的解析式;
(2)若函数的图象与直线有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若对恒成立,求实数的取值范围;
(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在区间上给定曲线,试在此区间内确定点的值,使图中所给阴影部分的面积之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数在区间的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中中所有元素的最小数,,求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:

查看答案和解析>>

同步练习册答案