精英家教网 > 高中数学 > 题目详情

二次函数,它的导函数的图象与直线平行.
(1)求的解析式;
(2)若函数的图象与直线有三个公共点,求m的取值范围.

(1);(2)

解析试题分析:(1 )先设,根据求出,然后根据可得对称轴,导函数图象与直线平行可求出,从而求出函数的解析式;(1 1 )先利用导数求出函数的极值,然后根据函数的图象与直线有三个公共点,可知的取值范围应介于两极值之间.
试题解析:(1),所以
,所以图像的对称轴
导函数图象与直线从而解得:

(2) .
 则有
上递增,
上递减 ,且
考点:1、利用导数求闭区间上函数的最值;2、函数解析式的求解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线恰有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在(0,1)上单调递减.
(1)求a的取值范围;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。
(1)把全程运输成本(元)表示为速度(海里/小时)的函数;
(2)为使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知的导函数,,且函数的图象过点.
(1)求函数的表达式;
(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).

(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;   
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案