精英家教网 > 高中数学 > 题目详情

某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。
(1)把全程运输成本(元)表示为速度(海里/小时)的函数;
(2)为使全程运输成本最小,轮船应以多大速度行驶?

(1);(2)轮船应以50海里/小时的速度行驶.

解析试题分析:(1)由题意易列出速度与成本的函数;(2)由列出的函数利用导数求最值.(也可用均值不等式)
试题解析:
解:(1)由题意得:
即:  6分
(2)由(1)知,
,解得x=50,或x=-50(舍去).  8分
时,
时,(均值不等式法同样给分)  10分
因此,函数在x=50处取得极小值,也是最小值.
故为使全程运输成本最小,轮船应以50海里/小时的速度行驶.  12分
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若上恒成立,求所有实数的值;
(3)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二次函数,它的导函数的图象与直线平行.
(1)求的解析式;
(2)若函数的图象与直线有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)试讨论函数的单调性;
(2)设函数,当函数有零点时,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数在区间的最小值为,求的值.

查看答案和解析>>

同步练习册答案