精英家教网 > 高中数学 > 题目详情

己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.

(1)  (2) 当时,函数最小值是;当时,函数最小值是.

解析试题分析:(1)由导数的几何意义可知,曲线在点(2,f (2))处的导数值为切线的斜率.  ,当时,
从而处的切线方程是:  (2)求函数在闭区间上的最值,先要根据导数研究函数单调性,确定其走势,再比较端点及极值点的函数值的大小确定最值. 因为,所以①当时, 时,递增,时,递减,最小值是②当时, 时,递减,时,递增,所以最小值是.
试题解析:(1)当时,
                      1
所以          4
处的切线方程是: ..6
(2)
 .8
①当时,时,递增,时,递减
所以当 时,且,
时,递增,时,递减    ..10
所以最小值是
②当时,且,在时,时,递减,时,递增,所以最小值是
综上所述:当时,函数最小值是;
时,函数最小值是              13
考点:利用导数求切线方程,利用导数求函数最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当 时,求处的切线方程;
(2)设函数
(ⅰ)若函数有且仅有一个零点时,求的值;
(ⅱ)在(ⅰ)的条件下,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。
(1)把全程运输成本(元)表示为速度(海里/小时)的函数;
(2)为使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图像上一点处的切线方程为(1)求的值;(2)若方程在区间内有两个不等实根,求的取值范围;(3)令如果的图像与轴交于两点,的中点为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

同步练习册答案