已知函数
.
(1)当
时,求
在
处的切线方程;
(2)设函数
,
(ⅰ)若函数
有且仅有一个零点时,求
的值;
(ⅱ)在(ⅰ)的条件下,若
,
,求
的取值范围.
(1)
;(2)(i)
;(ii)
.
解析试题分析:(1)将
代入函数解析式,求出
,由此计算
与
的值,最后利用点斜式写出相应的切线方程;(2)利用参数分离法将问题转化为直线
与函数
的图象有且仅有一个交点来处理,然后利用导数来研究函数
的单调性与极值,从而求出
的值;(ii)将问题转化为
,然后利用导数研究
在区间
上最值,从而确定实数
的取值范围.
(1)当
时,
,定义域
,
,
,又
,
在
处的切线方程
;
(2)(ⅰ)令
,
则
,
即
,
令
,
则
,
令
,
,
,
在
上是减函数,
又
,
所以当
时,
,当
时,
,
所以
在
上单调递增,在
上单调递减,
,
所以当函数
有且仅有一个零点时
;
(ⅱ)当
,
,
若
,
,只需证明
,
,
令
,得
或
,
又
,
函数
在
上单调递增,在
上单调递减,在
上单调递增
又
,
,
,
即
,
,
.
考点:1.利用导数求函数的切线方程;2.函数的零点;3.不等式恒成立;4.参数分离法
科目:高中数学 来源: 题型:解答题
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知A,b是实数,1和-1是函数f(x)=x3+Ax2+b x的两个极值点.
(1)求A和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)
的单调性,并证明你的结论;
(2)设函数
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)若函数
的图象切x轴于点(2,0),求a、b的值;
(2)设函数
的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数
的图象上任意不同的两点的连线的斜率小于l,求证
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率
与日产量
(件)之间近似地满足关系式
(日产品废品率![]()
).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润
日正品赢利额
日废品亏损额)
(1)将该车间日利润
(千元)表示为日产量
(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com