精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的极小值;
(2)求函数的递增区间.

(1)极小值为;(2)函数的单调递增区间为.

解析试题分析:(1)先确定函数的定义域并求出函数的导数,然后确定的取值范围,最后根据可导函数的极小值点的左侧导数小于0,右侧大于0,从而确定函数的极小值;(2)由,即可求出函数的单调递增区间.
试题解析:(1) ∵   ∴          3分
所以当时,;当时,             6分
∴ 当时,函数有极小值               8分
(2)由                11分
∴ 函数的递增区间是                  12分.
考点:1.函数的极值与导数;2.函数的单调性与导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).

(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)当a=时,求函数f(x)的单调区间;
(2)当时,函数y=f(x)图像上的点都在所表示的平面区域内,求实数a的取值范围;
(3)求证:(其中,e是自然数对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数在区间的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:函数在区间上存在唯一的极值点;
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案