精英家教网 > 高中数学 > 题目详情

在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

当箱底边长为时,箱子容积最大,最大容积是.

解析试题分析:设箱底边长为,则无盖的方底箱子的高,其体积为,从而可得,通过求导,讨论导数的正负得函数的增减性,根据函数的单调性可求体积的最大值.
试题解析:设箱底边长为,则无盖的方底箱子的高,其体积为
 
,得,解得(舍去)
时,;当时,
所以时,单调递增;时,单调递减,所以函数时取得极大值, 结合实际情况,这个极大值就是函数的最大值.
故当箱底边长为时,箱子容积最大,最大容积是.
考点:导数在实际中的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求的极大值;
(2)求的范围,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数..
(1)设曲线处的切线为,点(1,0)到直线l的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当是否存在实数处的切线与y轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)当时,若方程上有两个实数解,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

巳知函数,其中.
(1)若是函数的极值点,求的值;
(2)若在区间上单调递增,求的取值范围;
(3)记,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的单调增区间
(2)若内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最大值;
(2)设,证明:有最大值,且.

查看答案和解析>>

同步练习册答案