精英家教网 > 高中数学 > 题目详情

已知.
(1)求函数的最大值;
(2)设,证明:有最大值,且.

(1)0;(2)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、最值等基础知识,同时考查分析问题解决问题的综合解题能力和计算能力.第一问, 对求导,由于单调递增,单调递减,判断出函数的单调性,求出函数的最大值;第二问,对求导,设分子为再求导,判断的单调性,再根据零点的定义判断上有零点,结合第一问的结论,得出所证结论.
试题解析: (1)
时,单调递增;
时,单调递减.
所以的最大值为.      4分
(2)
,则
时,单调递减;
时,单调递增;
时,单调递减.     7分

所以有一零点
时,单调递增;
时,单调递减.     10分
由(1)知,当时,;当时,
因此有最大值,且.      12分
考点:1.利用导数研究函数的单调性;2.利用导数求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值;
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数单调区间;
(2)若函数在区间[1,2]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求的值;
(2)若的图象在点处的切线方程为
①求在区间上的最大值;
②求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?

查看答案和解析>>

同步练习册答案