已知.
(1)求函数的最大值;
(2)设,证明:有最大值,且.
(1)0;(2)证明过程详见解析.
解析试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、最值等基础知识,同时考查分析问题解决问题的综合解题能力和计算能力.第一问, 对求导,由于单调递增,单调递减,判断出函数的单调性,求出函数的最大值;第二问,对求导,设分子为再求导,判断的单调性,再根据零点的定义判断在上有零点,结合第一问的结论,得出所证结论.
试题解析: (1).
当时,,单调递增;
当时,,单调递减.
所以的最大值为. 4分
(2),.
设,则.
当时,,单调递减;
当时,,单调递增;
当时,,单调递减. 7分
又,,,
所以在有一零点.
当时,,单调递增;
当时,,单调递减. 10分
由(1)知,当时,;当时,.
因此有最大值,且. 12分
考点:1.利用导数研究函数的单调性;2.利用导数求函数的最值.
科目:高中数学 来源: 题型:解答题
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com