精英家教网 > 高中数学 > 题目详情

已知函数
(1)若的极值点,求的值;
(2)若的图象在点处的切线方程为
①求在区间上的最大值;
②求函数的单调区间.

或2(2)①8②时,单调递减,在单调递增;时,单调递减,在单调递增.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求的单调增区间
(2)若内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最大值;
(2)设,证明:有最大值,且.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若,是否存在a,bR,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数在R上的单调区间;
(III )对于给定的实数成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2-(a-2)x-alnx.
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值;
(3)若方程f(x)=c有两个不相等的实数根x1、x2,求证:f′>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一矩形铁皮的长为8 cm,宽为5 cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

同步练习册答案