精英家教网 > 高中数学 > 题目详情

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

(1)切线方程为.(2)的最大值是.(3)详见解析.

解析试题分析:(1)一般地,曲线在点处的切线方程为:.注意,此题是求过原点的切线,而不是求在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)令,则问题转化为恒成立.注意到,所以如果单调增,则必有恒成立.下面就通过导数研究的单调性.(3)不等式可变形为:.为了证这个不等式,首先证;而证这个不等式可利用导数证明.故令,然后利用导数求在区间上范围即可.
试题解析:(1).若切点为原点,由知切线方程为;
若切点不是原点,设切点为,由于,故由切线过原点知,在内有唯一的根.
,故切线方程为.
综上所述,所求切线有两条,方程分别为.
(2)令,则,,显然有,且的导函数为:
.
,则,由恒成立,从而对恒有,即单调增,从而恒成立,从而单调增,恒成立.
,则,由知存在,使得恒成立,即恒成立,再由知存在,使得恒成立,再由便知不能对恒成立.
综上所述,所求的最大值是.
(3)当时,令,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若方程内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数)
(2)如果函数的图象与x轴交于两点.求证:(其中正常数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的最小值;
(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线处的切线方程;
(2)若在区间上函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

同步练习册答案