精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

(1);(2)①当时,;②当时,
③当时,;(3)详见解析.

解析试题分析:(1)根据题意首先由点在曲线上,运用待定系数的方法求出,再由切线与导数的关系即可求出切线方程为;(2)对函数求导可得:,分析m对导数的影响,可见要进行分类讨论:①当时,,所以函数上单调递增,利用单调性可求出最大值;②当,即时,,所以函数上单调递增,利用单调性可求出最大值;③当,即时,导数有下有负,列表可求出函数的最大值;④当,即时,,所以函数上单调递减,利用单调性可求出最大值;(3)显然两零点均为正数,故不妨设,由零点的定义可得:,即,观察此两式的结构特征可相加也可相减化简得:,现在我们要证明,即证明,也就是.又因为,所以即证明,即.由它的结构可令=t,则,于是.构造一新函数,将问题转化为求此函数的最小值大于零,即可得证.
试题解析:(1)因为点在曲线上,所以,解得
因为,所以切线的斜率为0,所以切线方程为.             3分
(2)因为
①当时,,所以函数上单调递增,则
②当,即时,,所以函数上单调递增,则                              5分
③当,即时,函数上单调递增,在上单调递减,
.                                      7分
④当,即时,,所以函数上单调递减,则               9分
综上,①当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数,当时,讨论的单调性;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,且为自然对数的底数.
(1)已知,求处的切线方程;
(2)若存在,使得成立,求的取值范围;
(3)设函数为坐标原点,若对于时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象在处的切线与轴平行,求的值;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求的极大值;
(2)求的范围,使得恒成立.

查看答案和解析>>

同步练习册答案