精英家教网 > 高中数学 > 题目详情

已知函数满足,且为自然对数的底数.
(1)已知,求处的切线方程;
(2)若存在,使得成立,求的取值范围;
(3)设函数为坐标原点,若对于时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.

(1);(2);(3)

解析试题分析:(1)应用导数的几何意义,求导数,求斜率,确定切线方程;
(2)由已知确定
根据得:
,只需
应用导数,求函数,的最大值即得解;
(3)设时的图象上的任意一点,可得
由于,得到
的情况,求得的取值范围.
方法比较明确,分类讨论、转化与化归思想的应用,是解决问题的关键.
试题解析:(1)

处的切线方程为:,即                  4分
(2)
,从而                      5分
得:
由于时,,且等号不能同时成立,所以
从而,为满足题意,必须.                         6分
,则

从而上为增函数,
所以,从而.                               9分
(3)设时的图象上的任意一点,则
的中点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=ex-ax-2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线
(1)试求曲线在点处的切线方程;
(2)试求与直线平行的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某水产养殖场拟造一个无盖的长方体水产养殖网箱,为了避免混养,箱中要安装一些筛网,其平面图如下,如果网箱四周网衣(图中实线部分)建造单价为每米56元,筛网(图中虚线部分)的建造单价为每米48元,网箱底面面积为160平方米,建造单价为每平方米50元,网衣及筛网的厚度忽略不计.
(1)把建造网箱的总造价y(元)表示为网箱的长x(米)的函数,并求出最低造价;
(2)若要求网箱的长不超过15米,宽不超过12米,则当网箱的长和宽各为多少米时,可使总造价最低?(结果精确到0.01米)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-mx(mR).
(1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)

(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1).求函数f(x)的单调区间及极值;
(2).若x1≠x2满足f(x1)=f(x2),求证:x1+x2<0

查看答案和解析>>

同步练习册答案