已知函数
.
(1)求证:函数
在区间
上存在唯一的极值点;
(2)当
时,若关于
的不等式
恒成立,试求实数
的取值范围.
(1)详见解析;(2)
.
解析试题分析:(1)先求
与
,看两值是否异号,然后证明
在[0,1]上单调性,即可证明函数
在区间[0,1]上存在唯一的极值点;
(2)由
得:
,令
,则
,
. 令
,则
,
,
,
所以
在
上单调递增,
,对a进行
和
讨论得出结论.
试题解析:(1)
, 1分
∵
,
,
∴
, ∴
在区间
上存在零点. 3分
令
,则
,
∴
在区间
上单调递增, 5分
∴
在区间
上存在唯一的极小值点. 6分
(2)由
得:
,
令
,则
,![]()
令
,则
,
,
,
所以
在
上单调递增,
. 9分
(1)当
时,
恒成立,即
,
所以
在
上单调递增,
. 11分
(2)当
时,存在
使
,即
,
当
时,
,所以
在
上单调递减,
,这与
对
恒成立矛盾.
综合(1)、(2)得:
. 14分
考点:利用导数求闭区间上函数的最值;函数在某点取得极值的条件.
科目:高中数学 来源: 题型:解答题
已知函数
..
(1)设曲线
处的切线为
,点(1,0)到直线l的距离为
,求a的值;
(2)若对于任意实数
恒成立,试确定
的取值范围;
(3)当
是否存在实数
处的切线与y轴垂直?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com