设
为实数,函数
.
(1)求
的单调区间与极值;
(2)求证:当
且
时,
.
(1)
在
上减,在
上增;当
时,
取极小值
(2)见解析
解析试题分析:本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.
(1)由
,知
,令
,得到
,列表讨论能求出f(x)的单调区间区间及极值.
(2)设
,于是
,由(1)知当a>ln2-1时,
最小值为
.于是对任意x∈R,都有
,所以g(x)在
单调递增.由此能够证明
.
试题解析:(1)由
,知
,令
,得到
,故
在
上单调递增,在
上单调递减,当
时,![]()
,即
取极小值![]()
(2)设函数
,则
,由(1)知
的极小值也是最小值为
,当
时,
,即在
内,
的最小值
,
恒成立,即在
内
,
在
单调递增,
即
即![]()
考点:函数的单调区间及极值的求法和不等式的证明
科目:高中数学 来源: 题型:解答题
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).![]()
(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,其中m,a均为实数.
(1)求
的极值;
(2)设
,若对任意的![]()
,
恒成立,求
的最小值;
(3)设
,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,其中m,a均为实数.
(1)求
的极值;
(2)设
,若对任意的![]()
,
恒成立,求
的最小值;
(3)设
,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,b
R),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com