精英家教网 > 高中数学 > 题目详情

已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:

(1);(2)详见解析.

解析试题分析:(1)欲求a的值,根据在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.再列出一个等式,最后解方程组即可得.
(2)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,最后求出极值即可.
(3)由(2)知,当a=1时,函数f(x)=,在[1,+∞)上是单调减函数,且f(1)==1,从而证得结论..
试题解析:解:(1)函数
所以又曲线处的切线与直线平行,所以             4分;
(2)令
当x变化时,的变化情况如下表:






+
0



极大值

由表可知:的单调递增区间是,单调递减区间是
所以处取得极大值,       8分;
(3)当由于
只需证明

因为,所以上单调递增,
成立。
故当时,有          12分;
考点:1.利用导数研究函数的极值;2.利用导数研究函数的单调性;3.利用导数研究曲线上某点切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数()
(1)若在点处的切线方程为,求的解析式及单调递减区间;
(2)若上存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在(0,1)上单调递减.
(1)求a的取值范围;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。
(1)把全程运输成本(元)表示为速度(海里/小时)的函数;
(2)为使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知的导函数,,且函数的图象过点.
(1)求函数的表达式;
(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,半径为30的圆形(为圆心)铁皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形材料卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设与矩形材料的边的夹角为,圆柱的体积为.

(1)求关于的函数关系式?
(2)求圆柱形罐子体积的最大值.

查看答案和解析>>

同步练习册答案