精英家教网 > 高中数学 > 题目详情

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

(1)a的最小值为;(2)

解析试题分析:(1)根据f (x)在上为减函数,得到上恒成立.转化成时,
应用导数确定其最大值为
(2)应用“转化与化归思想”,对命题进行一系列的转化,“若存在使成立”等价于“当时,有”.
由(1)问题等价于:“当时,有”.
讨论①当时,②当<时, ,作出结论.
(1)由已知得x>0,x≠1.
因f (x)在上为减函数,故上恒成立.      1分
所以当时,
,            2分
故当,即时,
所以于是,故a的最小值为.                  4分
(2)命题“若存在使成立”等价于
“当时,有”.                   5分
由(1),当时,
问题等价于:“当时,有”.                  6分
①当时,由(1),上为减函数,
=,故.                  8分
②当<时,由于上的值域为
(ⅰ),即恒成立,故上为增函数,
于是,,矛盾.                 10分
(ⅱ),即,由的单调性和值域知,
存在唯一,使,且满足:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数() =,g ()=+
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,证明:存在常数M,使得对于任意的,都有≤ .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设).
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)试问函数能否在处取得极值,请说明理由;
(2)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设,当时,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:

查看答案和解析>>

同步练习册答案