精英家教网 > 高中数学 > 题目详情

据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设).
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.

(1) , (2) 8.

解析试题分析:(1)解实际问题应用题,关键要正确理解题意,正确列出等量关系,注意考虑函数定义域. 设点C受A污染源污染程度为,点C受B污染源污染程度为,其中为比例系数,且.从而点C处受污染程度.定义域为 (2) 因为,所以,,求复杂分式函数最值,通常考虑利用导数求解. ,令,得,因此函数在单调减,在单调增,即在时函数取极小值,也是最小值. 又此时,解得,经验证符合题意.
解:(1)设点C受A污染源污染程度为,点C受B污染源污染程度为,其中为比例系数,且.                 4分
从而点C处受污染程度.         6分
(2)因为,所以,,             8分
,令,得,       12分
又此时,解得,经验证符合题意.
所以,污染源B的污染强度的值为8.                14分
考点:利用导数求函数值域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-ax+1.
(1)求x=1时,f(x)取得极值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若对任意m∈R,直线y=-x+m都不是曲线y=f(x)的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线恰有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

同步练习册答案