已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中是中所有元素的最小数,,求的通项公式.
(1) ;(2)
解析试题分析:(1)由于点都在函数的图像上,所以可得关于的关系式.再根据通项与前项和的关系式可求得通项.
(2)由过点的切线的斜率为,所以可得集合A,由(1)的结论可得集合B. 因为等差数列的任一项,其中是中所有元素的最小数.即可得.再根据,即可求出公差的值.从而可求得数列的通项公式.
试题解析:(1)点都在函数的图像上,,
当时,
当n=1时,满足上式,所以数列的通项公式为
(2)由求导可得
过点的切线的斜率为,.
又因为,其中是中的最小数.所以.
是公差是4的倍数,
又,,解得m=27.
所以,设等差数列的公差为,则
,所以的通项公式为
考点:1.函数的导数.2.数列的通项公式的求法.3.集合的运算.4.最值问题.
科目:高中数学 来源: 题型:解答题
如图,半径为30的圆形(为圆心)铁皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形材料卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设与矩形材料的边的夹角为,圆柱的体积为.
(1)求关于的函数关系式?
(2)求圆柱形罐子体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com