精英家教网 > 高中数学 > 题目详情

设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

(1);(2)

解析试题分析:(1)根据为奇函数可得。由导数的几何意义可得的最小值可求,从而可得的解析式。(2)先求导,在令导数大于0得增区间,令导数小于零得减区间,从而求得在上的极值。再求两端点处函数值,比较极值与端点处函数值最小的为最小值,最大的为最大值。
试题解析:
解:(1)∵为奇函数,∴                   1分
,∴.                     2分
的最小值为,∴.         4分
由题设知,∴
                                                 6分
(2)                      7分
变化时,的变化情况表如下:

∴函数的单调递增区间为         8分
,极小值,极大值
时, ;当时,.          10分
考点:1求导;2导数的几何意义;3用导数求函数的极值和最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中a为常数.
(1)当时,求的最大值;
(2)若在区间(0,e]上的最大值为,求a的值;
(3)当时,试推断方程=是否有实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在区间上给定曲线,试在此区间内确定点的值,使图中所给阴影部分的面积之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中中所有元素的最小数,,求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足,求的整数部分.

查看答案和解析>>

同步练习册答案