设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
(1) (2)
解析试题分析:
科目:高中数学
来源:
题型:解答题
已知函数,.
科目:高中数学
来源:
题型:解答题
已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
科目:高中数学
来源:
题型:解答题
已知函数处取得极值2
科目:高中数学
来源:
题型:解答题
设函数f(x)=(x2+ax+b)ex(x∈R).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
(1)根据题意对函数求导,获得导函数的根与大于0小于0的解集,获得函数的单调区间和极值点,极值.进而确定函数在区间上的单调性,再利用数形结合的思想与零点存在性定理的知识可以得到函数在上要有两个零点,需要满足即可,解不等式即可求出的取值范围.
(2)根据题意,则利用(1)可以得到的单调性以及极值点,极值.要得到函数在含参数的区间上的最大值,我们需要讨论的范围得到函数的在区间上的单调性进而得到在该区间上的最大值,为此分三种情况分别为,依次确定单调性得到最大值即可.
试题解析:
(1)∵
∴, (1分)
令,解得 (2分)
当x变化时,,的变化情况如下表:0 — 0 ↗ 极大值
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若对,恒成立,求实数的取值范围;
(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数、,有.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中是中所有元素的最小数,,求的通项公式.
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若为图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围
(1)若a=2,b=-2,求函数f(x)的极大值;
(2)若x=1是函数f(x)的一个极值点.
①试用a表示b;
②设a>0,函数g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号