[点评]空间几何体的三视图是课标高考的一个考点.主要考查方式之一就是根据三视图还原到原来的空间几何体.并进行有关的计算.重点二:空间点.线.面位置关系的判断 查看更多

 

题目列表(包括答案和解析)

我们常用(    )表示空间几何体,三视图是观察者从(    )位置观察同一个空间几何体而画出的图形;直观图是观察者站在(    )观察一个空间几何体而画出的图形。

查看答案和解析>>

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC。

(I)     证明PC平面BED;

(II)   设二面角A-PB-C为90°,求PD与平面PBC所成角的大小

【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。

从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。

解法一:因为底面ABCD为菱形,所以BDAC,又

【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。

 

查看答案和解析>>

(2013•天津模拟)如图是一个空间几何体的三视图,则该几何体的体积大小为
4-
3
4-
3

查看答案和解析>>

一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是
4
3
3
4
3
3

查看答案和解析>>


同步练习册答案