方法二:因为PA⊥PD.PA⊥AB.AD⊥AB.以A为坐标原点AD长为单位长度.如图建立空间直角坐标系.则各点坐标为A.C.P.M(0.1.. 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

16、设每年南充市第二次模拟考试成绩大体上能反映当年全市考生高考的成绩状况,设某一年二模考试理科成绩服从正态分布ξ~N(480,1002),若往年全市一本院校录取率为40%,那么一本录取分数线可能划在(已知Φ(0.25)=0.6)
505
分.

查看答案和解析>>

(2007•武汉模拟)在一个单位中普查某种疾病,600个人去验血,对这些人的血的化验可以用两种方法进行:
方法一:每个人的血分别化验,这时需要化验600次;
方法二:把每个人的血样分成两份,取k(k≥2)个人的血样各一份混在一起进行化验,如果结果是阴性的,那么对这k个人只作一次检验就够了;如果结果阳性的,那么再对这k个人的另一份血样逐个化验,这时对这k个人共需作k+1次化验.
假定对所有的人来说,化验结果是阳性的概率是0.1,而且这些人的反应是独立的.将每个人的血样所需的检验次数作为随机变量ξ.
(1)写出方法二中随机变量ξ的分布列,并求数学期望Eξ(用k表示);
(2)现有方法一和方法二中k分别取3、4、5共四种方案,请判断哪种方案最好,并说明理由.(参考数据:取0.93=0.729,0.94=0.656,0.95=0.591)

查看答案和解析>>

(2010•青浦区二模)[理科]已知一圆锥的底面直径、高和一圆柱的底面直径均相等,且圆锥和圆柱的体积也相等,那么,圆锥的全面积与圆柱的全面积之比为
3+3
5
10
3+3
5
10

查看答案和解析>>

(2013•虹口区二模)如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)如果PA=2,求异面直线AE与PD所成的角的大小.

查看答案和解析>>


同步练习册答案