SDB.又SB平面SDB.∴AC⊥SB. 查看更多

 

题目列表(包括答案和解析)

如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1平面ABC,D、E分别是AC、CC1的中点.
(1)求证:AE⊥平面A1BD;
(2)求二面角D-BA1-A的余弦值;
(3)求点B1到平面A1BD的距离.

查看答案和解析>>

如图所示,在三棱锥S-ABC中,平面SAB⊥平面ABC,AC⊥AB,SA=SB=AB=2,AC=1
(1)求异面直线AB与SC所成的角的余弦值;
(2)在线段AB上求一点D,使CD与平面SAC成45°角.

查看答案和解析>>

如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中正确的是                (把正确的答案都填上)

(1)AC⊥SB

(2)AB∥平面SCD

(3)SA与平面SBD所成的角等于SC与平面SBD所成的角

(4)AB与SC所成的角等于DC与SA所成的角

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(14分)如图,在三棱锥S—ABC中,是边长为4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分别为AB、SB的中点。

⑴ 求证:AC⊥SB;

⑵ 求二面角N—CM—B的正切值;

⑶ 求点B到平面CMN的距离。

 

查看答案和解析>>


同步练习册答案