题目列表(包括答案和解析)
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC
上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
1.DM=___▲____, AN=___▲____(用含x的代数式表示)
2.说明△FMN
∽ △QWP;
3.试问
为何值时,△PQW为直角三角形?
![]()
4.问当
为____▲_____时,线段MN最短?
![]()
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC
上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
【小题1】DM=___▲____, AN=___▲____(用含x的代数式表示)
【小题2】说明△FMN
∽ △QWP;
【小题3】试问
为何值时,△PQW为直角三角形? ![]()
【小题4】问当
为____▲_____时,线段MN最短?![]()
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC
上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
1.DM=___▲____, AN=___▲____(用含x的代数式表示)
2.说明△FMN
∽ △QWP;
3.试问
为何值时,△PQW为直角三角形?
![]()
4.问当
为____▲_____时,线段MN最短?
![]()
如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度.把Rt△OAB沿x轴正方向平移1个单位长度后得△
.
(1)求以A为顶点,且经过点
的抛物线的解析式;
(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com