题目列表(包括答案和解析)
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
请先阅读:
在等式
(
)的两边求导,得:
,
由求导法则,得
,化简得等式:
。
(1)利用上题的想法(或其他方法),结合等式
(
,正整数
),证明:
。
(2)对于正整数
,求证:
(i)
; (ii)
; (iii)
。
一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每
小时通过管道向所管辖区域供水
千吨.
(1)多少小时后,蓄水池存水量最少?
(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?
【解析】第一问中(1)设
小时后,蓄水池有水
千吨.依题意,
当
,即
(小时)时,蓄水池的水量最少,只有1千吨
第二问依题意,
解得:![]()
解:(1)设
小时后,蓄水池有水
千吨.………………………………………1分
依题意,
…………………………………………4分
当
,即
(小时)时,蓄水池的水量最少,只有1千吨. ………2分
(2)依题意,
………………………………………………3分
解得:
. …………………………………………………………………3分
所以,当天有8小时会出现供水紧张的情况
甲船由
岛出发向北偏东
的方向作匀速直线航行,速度为
海里∕小时,在甲船从
岛出发的同时,乙船从
岛正南
海里处的
岛出发,朝北偏东
的方向作匀速直线航行,速度为
海里∕小时。
⑴求出发
小时时两船相距多少海里?
⑴ 两船出发后多长时间相距最近?最近距离为多少海里?
【解析】第一问中根据时间得到出发
小时时两船相距的海里为
![]()
第二问设时间为t,则
![]()
利用二次函数求得最值,
解:⑴依题意有:两船相距
![]()
答:出发3小时时两船相距
海里
![]()
⑵两船出发后t小时时相距最近,即
![]()
即当t=4时两船最近,最近距离为
海里。
在
中,已知
,面积
,
(1)求
的三边的长;
(2)设
是
(含边界)内的一点,
到三边
的距离分别是![]()
①写出
所满足的等量关系;
②利用线性规划相关知识求出
的取值范围.
【解析】第一问中利用设
中角
所对边分别为![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三边长![]()
![]()
第二问中,①
得
![]()
故![]()
②![]()
令
依题意有![]()
作图,然后结合区域得到最值。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com