题目列表(包括答案和解析)
(本小题满分12分)
PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.
某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)
![]()
(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;
(II) 以这9天的PM2. 5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.
(本小题满分12分)
PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.
某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)![]()
(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;
(II) 以这9天的PM2. 5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.
(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为![]()
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
(本小题满分12分)
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米
75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
![]()
(I)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;
(II)从这15天的数据中任取三天数据,记
表示抽到PM2.5监测数据超标的天数,求
的分布列;
(III)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为![]()
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
一、选择题(每小题5分,共50分)
1.B 2.C 3.A 4.D 5.C 6.D 7.B 8.C 9.A 10.D
二、填空题(每小题4分,共24分)
11.180 12.60 13.
14.2 15.5 16.
三、解答题(本大题共6小题,共76分)
17.(本题12分)
解:(Ⅰ)
………………………………(2分)

…………(4分)

…………………………………(6分)
(Ⅱ)
. ……………(8分)
由已知条件
根据正弦定理,得
…………………(10分)
……………………(12分)
18.(本题12分)
解:(Ⅰ)
……………………(2分)
……………………(4分)


……………………(6分)
当
时,有
(人).
在
的基础上,
有
(人),
……………………(8分)
(Ⅱ)
…………(10分)

…………………………………(12分)
19.(本题12分)
证明:(Ⅰ)
在△
中,




…………………………(2分)

平面
.
…………………………(4分)
平面
…………………………(6分)
(Ⅱ)连接
交
于M,则M为
的中点 …………………………(8分)
连接DM,则
∥
,
…………………………(10分)
平面
,
平面
,
∥平面
…………………………(12分)
20.(本题12分)
解:(Ⅰ)由已知得
,又
,
即
. …………………………(2分)
,公差
.
由
,得 …………………………(4分)

即
.解得
或
(舍去).
.
…………………………(6分)
(Ⅱ)由
得
…………………………(8分)
…………………………(9分)
是等差数列.
则
………………………(11分)
……………………(12分)
21.(本题14分)
解:(Ⅰ)依题意得
.
………………………(2分)
把(1,3)代入
.
解得
.
椭圆的方程为
.
………………………(4分)
(Ⅱ)由(Ⅰ)得
,设
,如图所示
点在椭圆上,
. ①
点异于顶点
、
,
.
由
、
、
三点共线,可得
从而
…………………………(7分)
② …………(8分)
将①式代入②式化简得
…………(10分)

…………(12分)
于是
为锐角,
为钝角. ……………(14分)
22.(本题14分)
解:(Ⅰ)
,
令
,得
或
.
………………(2分)
当
时,
在
上单调递增;
当
时,
在
上单调递减,
而
,
当
时,
的值域是
. ……………(4分)(Ⅱ)设函数
在
上的值域是A,
若对任意
.总存在
1,使
,
.
……………(6分)
.
①当
时,
,
函数
在
上单调递减.
,
当
时,不满足
; ……………………(8分)
②当
时,
,
令
,得
或
(舍去 ………………(9分)
(i)
时,
的变化如下表:

0



2

-
0
+

0




.

,解得
. …………………(11分)
(ii)当
时,
函数
在
上单调递减.

,
当
时,不满足
.
…………………(13分)
综上可知,实数
的取值范围是
. ……………………(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com