查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

一、选择题(每小题5分,共50分)

1.B  2.C  3.A  4.D  5.C  6.D  7.B  8.C  9.A  10.D

二、填空题(每小题4分,共24分)

11.180  12.60  13.  14.2   15.5   16.

三、解答题(本大题共6小题,共76分)

17.(本题12分)

    解:(Ⅰ)

                         ………………………………(2分)

 

                     …………(4分)

                    

                                             …………………………………(6分)

       (Ⅱ)

               .                     ……………(8分)

              由已知条件

              根据正弦定理,得               …………………(10分)

                   ……………………(12分)

 

 

18.(本题12分)

解:(Ⅰ)          ……………………(2分)

                                  ……………………(4分)

                        

                                                   ……………………(6分)

   当时,有(人).

   的基础上,(人),

                        ……………………(8分)

 

(Ⅱ) …………(10分)

    

                         …………………………………(12分)

 

 

19.(本题12分)

证明:(Ⅰ)在△中,

            

                              

                            

                 

                                     …………………………(2分)

                 

                  平面.         …………………………(4分)

                  平面

                                       …………………………(6分)

(Ⅱ)连接于M,则M为的中点 …………………………(8分)

连接DM,则,              …………………………(10分)

平面平面

 ∥平面                   …………………………(12分)

 

 

20.(本题12分)

    解:(Ⅰ)由已知得,又

                  .   …………………………(2分)

                  ,公差

                  由,得   …………………………(4分)

                    

.解得(舍去).

.           …………………………(6分)

(Ⅱ)由

          …………………………(8分)

                           …………………………(9分)

   是等差数列.

    ………………………(11分)

                 ……………………(12分)

 

21.(本题14分)

  解:(Ⅰ)依题意得

            .                  ………………………(2分)

            把(1,3)代入

解得

椭圆的方程为.                 ………………………(4分)

(Ⅱ)由(Ⅰ)得,设,如图所示

   点在椭圆上,

.       ①

点异于顶点

三点共线,可得

从而     …………………………(7分)

 ②  …………(8分)

将①式代入②式化简得            …………(10分)

                                     …………(12分)

于是为锐角,为钝角.                ……………(14分)

 

 

22.(本题14分)

解:(Ⅰ)

                  令,得.          ………………(2分)

                  当时,上单调递增;

                  当时,上单调递减,

                  而

                  时,的值域是.    ……………(4分)(Ⅱ)设函数上的值域是A,

若对任意.总存在1,使

.                               ……………(6分)

①当时,

               函数上单调递减.

              

时,不满足;    ……………………(8分)

②当时,

,得(舍去        ………………(9分)

(i)时,的变化如下表:

0

2

 

-

0

+

 

0

,解得.      …………………(11分)

(ii)当时,

       函数上单调递减.

       时,不满足.         …………………(13分)

        综上可知,实数的取值范围是.     ……………………(14分)

 


同步练习册答案