20.已知双曲线的一个焦点为, 且, 一条渐近线方程为, 其中是以4为首项的正数数列. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分) 已知双曲线的两个焦点为的曲线C上.

  (Ⅰ)求双曲线C的方程;

  (Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

(本小题满分13分)

已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又过点F的直线与双曲线右交于点M、N,点P为点M关于轴的对称点。

(1)求双曲线的方程;

(2)证明:B、P、N三点共线;

(3)求面积的最小值。

 

查看答案和解析>>

(本小题满分13分)已知双曲线的焦点为,且离心率为2;

(Ⅰ)求双曲线的标准方程;

(Ⅱ)若经过点的直线交双曲线两点,且的中点,求直线的方程。

 

 

查看答案和解析>>

(本小题满分13分)

已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是

(I)证明为常数;

(II)若动点满足(其中为坐标原点),求点的轨迹方程.

 

查看答案和解析>>

(本小题满分13分)
已知双曲线的两条渐近线分别为.

(1)求双曲线的离心率;
(2)如图,为坐标原点,动直线分别交直线两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.

查看答案和解析>>

高考资源网版权所有

一、DBCCC  DCADB

二、11.72  12.  13.  14.  15.

三、16.(Ⅰ).

,∴,∴,∴当时,f(A)取最小值.

(Ⅱ)由(Ⅰ)知, 时, .于是,

.

17.(Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且

故取出的4个球均为黑球的概率为

(Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,

故取出的4个球中恰有1个红球的概率为

(Ⅲ)取出的4个球中红球的个数为0,1,2,3时的概率分别记为.由(Ⅰ),(Ⅱ)得.从而

18.(I)∵AB∥CD,AD=DC=CB=a,∴四边形ABCD是等腰梯形.设AC交BD于N,连EN.

∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,

∴AC=,AB=2a,=90°.

又四边形ACEF是矩形,

∴AC⊥平面BCE.∴AC⊥BE.

(II)∵平面ACEF⊥平面ABCD, EC⊥AC,

∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,

∴AF⊥AD,而AF=CE,AD=CD,

∴Rt△≌Rt△,DE=DF.

过D作DG⊥EF于G,则G为EF的中点,于是EG=.

在Rt△中,,∴.∴.

    设所求二面角大小为,则由,得,,

www.ks5u.com

.21.(I)由于椭圆过定点A(1,0),于是a=1,c=.

,∴.

(Ⅱ)解方程组,得.

,∴.

(Ⅲ)设抛物线方程为:.

又∵,∴.

,得.

.

内有根且单调递增,

.

 

 

 

 


同步练习册答案