1.用钢笔或圆珠笔将答案直接写在试卷上. 查看更多

 

题目列表(包括答案和解析)

答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

查看答案和解析>>

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.

现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:

货运收费项目及收费标准表

运输工具

运输费单价:元/(吨?千米)

冷藏费单价:元/(吨?时)

固定费用:元/次

汽车

2

5

200

火车

1.6

5

2280

          

(1)汽车的速度为       千米/时,火车的速度为       千米/时:

(2)设每天用汽车和火车运输的总费用分别为(元)和(元),分别求的函数关系式(不必写出的取值范围),及为何值时(总费用=运输费+冷藏费+固定费用)

(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

 

查看答案和解析>>

必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

第Ⅰ卷   选择题(共50分)

一、选择题(本大题共10小题,每小题5分,满分50分)

1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、计算复数(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有
 
条,这些直线中共有f(n)对异面直线,则f(4)=
 
;f(n)=
 
.(答案用数字或n的解析式表示)

查看答案和解析>>

某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为
23
,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.

查看答案和解析>>

一、选择题(本大题共8小题,每小题5,40.

题号

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

D

B

A

 C

D

C

B

C

 

二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)

(9)    (10)     (11)   

(12)       (13)     (14)4,8

三、解答题(本大题共6小题,80.

(15)      (共12 分)

解:(I)

= ?

                                     2分

                                                 4分

= .                                                     5分

                               6分              

函数的最大值为.                                             7分

当且仅当Z)时,函数取得最大值为.

(II)由Z),                          9分

  (Z).                                   11分

函数的单调递增区间为[](Z).                     12分                                                                                  

(16) (共14分)

解法一:(I)证明:连结A1D,在正方体AC1中, ∵A1B1^平面A1ADD1,

\ A1D是PD在平面A1ADD内的射影.                                  2分

         在正方形A1ADD1中, A1D^ AD1, \ PDAD1.                           4分

 解(II)  取中点,连结,则//.                              

平面,∴平面.

在平面内的射影.

为CP与平面D1DCC1所成的角.                       7分

中,               

与平面D1DCC1所成的角的正弦值为.       9分                                       

(III)在正方体AC1中,.

平面内,

∥平面.

∴点到平面的距离与点C1到平面的距离相等.

平面

∴平面平面.

又平面平面

C1C1H于H,则C1H平面.

C1的长为点C1到平面的距离.                                          12分

 连结C1 ,并在上取点,使//.

中,,得.

∴点到平面的距离为.                                                14分

  解法二:如图,以D为坐标原点,建立空间直角坐标系.

        由题设知正方体棱长为4,则

.                             1分

      (I)设,.                          3分

           .                             4分

      (II)由题设可得,  , 故.

是平面

的法向量.                      7分

  .          8分                                                               

与平面D1DCC1所成角的正弦值为.                                    9分

(III),设平面D1DP的法向量

.

,即,则

.                                                              12分

C到平面D1DP的距离为.                                   14分

(17)(共13分)

解(I)设事件“某人参加A种竞猜活动只获得一个福娃奖品”为事件M,            1分

依题意,答对一题的概率为,则

P(M)=                                                   3分

=.                                                4分

(II)依题意,某人参加B种竞猜活动,结束时答题数=1,2,…,6,                5分

.                                       11分

所以,的分布列是

1

2

3

4

5

6

P

 

 

 

                 

      设

      ∴,

      ∴ E==.                       13分 

     答:某人参加A种竞猜活动只获得一个福娃奖品的概率为;某人参加B种竞猜活动,结束时答题数为E.

(18)(本小题共13分)

解;如图,建立直角坐标系,依题意:设椭圆方

   程为(a>b>0),         1分

(I)依题意:   4分                                             

椭圆M的离心率大于0.7,所以.

椭圆方程为.                                             6分

(II)因为直线l过原点与椭圆交于点,设椭圆M的左焦点为.

由对称性可知,四边形是平行四边形.

的面积等于的面积.                                   8分


同步练习册答案