题目列表(包括答案和解析)
在数列
中,
,当
时,
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
.
【解析】本试题主要考查了数列的通项公式的求和 综合运用。第一问中 ,利用
,得到
且
,故故
为以1为首项,公差为2的等差数列. 从而
![]()
第二问中,![]()
![]()
![]()
由
及
知
,从而可得
且![]()
故
为以1为首项,公差为2的等差数列.
从而
……………………6分
(2)![]()
……………………9分
![]()
![]()
已知指数函数
,当
时,有
,解关于x的不等式![]()
【解析】本试题主要考查了指数函数,对数函数性质的运用。首先利用指数函数
,当
时,有
,,得到
,从而
等价于
,联立不等式组可以解得![]()
解:∵
在
时,有
,
∴
。
于是由
,得
,
解得
,
∴ 不等式的解集为
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com