(2)由题设.有 查看更多

 

题目列表(包括答案和解析)

设S是满足下列两个条件的实数所构成的集合:①1∉S;②若a∈S,则
1
1-a
∈S.试解答下列问题:
(1)若2∈S,则S中必还有其他两个元素,求出这两个元素;
(2)求证:若a∈S,则1-
1
a
∈S;
(3)在集合S中,元素的个数能否只有1个?请说明理由.

查看答案和解析>>

设集合M={(x,y)|x2+y2=a,x≤0,y∈R},N={(x,y)|2x+y=0,x≥0,y∈R},若M∩N恰有两个子集,则由符合题意的a构成的集合为
{1}
{1}

查看答案和解析>>

设命题甲:直线x-y=0与圆(x-a)2+y2=1有公共点;命题乙:函数f(x)=2-|x+1|-a的图象与x轴有交点,试判断命题甲与命题乙的条件关系,并说明理由.

查看答案和解析>>

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

由3人组成的一个代表队参加某项知识竞赛.竞赛共有10道题,每题可由任一人回答,答对得10分,答错得0分.假设3人答题是相互独立的,且回答问题正确的概率分别为0.4、0.4、0.5,则此次竞赛该代表队可望获得
82
82
分.

查看答案和解析>>


同步练习册答案