⑴由解得..----------3分 查看更多

 

题目列表(包括答案和解析)

甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 的最大值.

查看答案和解析>>

甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 数学公式的最大值.

查看答案和解析>>

为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
  喜欢看该节目 不喜欢看该节目 合计
女生   5  
男生 10    
合计     50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
  喜欢看该节目 不喜欢看该节目 合计
女生   5  
男生 10    
合计     50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

某市甲、乙两校高二级学生分别有1100人和1000人,为了解两校全体高二级学生期末统考的数学成绩情况,采用分层抽样方法从这两所学校共抽取105名高二学生的数学成绩,并得到成绩频数分布表如下,规定考试成绩在[120,150]为优秀.
甲校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 2 3 10 15 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 1 2 9 8 10 10 y 3
(1)求表中x与y的值;
(2)由以上统计数据完成下面2x2列联表,问是否有99%的把握认为学生数学成绩优秀与所在学校有关?
甲校 乙校 总计
优秀
非优秀
总计

查看答案和解析>>


同步练习册答案