20. 集合A是由适合以下性质的函数f (x) 构成的: 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)集合A是由适合以下性质的函数构成的;对于任意的,都有

  (1)分别判断函数是否在集合A中?并说明理由;

  (2)设函数,试求|2a+b|的取值范围;

  (3)在(2)的条件下,若,且对于满足(2)的每个实数a,存在最小的实数m,使得当恒成立,试求用a表示m的表达式.

查看答案和解析>>

(本小题满分13分)

设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”.

(1)判断函数是否是集合M中的元素,并说明理由;

(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;

(3)设是方程的实数根,求证:对于定义域中的任意的,当时,

 

 

查看答案和解析>>

(本小题满分13分)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”.
(1)判断函数是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;
(3)设是方程的实数根,求证:对于定义域中的任意的,当时,

查看答案和解析>>

 (2012年高考湖北卷理科21)(本小题满分13分)

设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。当点A在圆上运动时,记点M的轨迹为曲线C。

(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;

(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。

查看答案和解析>>

(本题满分14分)集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断f(x)= x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)ÎA且定义域为(0,+¥),值域为(0,1),,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>

一、选择题(每小题5分,共40分)

题 号

1

2

3

4

5

6

7

8

答 案

B

A

D

C

C

A

B

C

二、填空题(每小题5分,其中第一空3分,第二空2分,共30分)

   9.2π; π   10.12π;x=13π    11.

   12.(±2,0);-    13.9;  41      14.12;  (-6,4)

三、15.(本小题满分12分)

解:(1)……………………3分

                  ………………5分

   (2)点P的坐标为………………6分

        由点P在直线上,即.………………9分

       

        ……………………12分

∵PA⊥底面ABCD,∴PA⊥CD.

∴CD⊥平面PAD……………………………………3分

∵AM平面PAD,∴CD⊥AM.

∵PC⊥平面AMN,∴PC⊥AM.

∴AM⊥平面PCD.

∴AM⊥PD.…………………………………………5分

   (II)解:∵AM⊥平面PCD(已证).

∴AM⊥PM,AM⊥NM.

∴∠PMN为二面角P-AM-N的平面角.…………………………7分

∵PN⊥平面AMN,∴PN⊥NM.

在直角△PCD中,CD=2,PD=2,∴PC=2.

∵PA=AD,AM⊥PD,∴M为PD的中点,PM=PD=

由Rt△PMN∽Rt△PCD,得 ∴.

…………10分

即二面角P―AM―N的大小为.(III)解:延长NM,CD交于点E.

∵PC⊥平面AMN,∴NE为CE在平面AMN内的射影

∴∠CEN为CD(即(CE)与平在AMN所成的角.…………12分

在Rt△PMN中,

∴CD与平面AMN所成的角的大小为…………15分

17. (I)解:因为{an}是等比数列a1=1,a2=a.

a≠0,an=an1.……………………………………2分

…………5分

是以a为首项, a2为公比的等比数列.

……………………9分

(II)甲、乙两个同学的说法都不正确,理由如下:……………………10分

解法一:设{bn}的公比为q,则

a1=1,a2=a, a1, a3, a5,…,a2n1,…是以1为首项,q为公比的等比数列,

a2, a4, a6, …, a2n , …是以a为首项,q为公比的等比数列,…………………………11分

即{an}为:1,a, q, aq , q2, aq2, ……………………………………………………………12分

当q=a2时,{an}是等比数列;

当q≠a2时,{an}不是等比数列.…………………………………………………………14分

解法二:{an}可能是等比数列,也可能不是等比数列,举例说明如下:

设{bn}的公比为q

(1)取a=q=1时,an=1(n∈N),此时bn=anan+1=1, {an}、{bn}都是等比数列.…………11分

(2)取a=2, q=1时,

所以{bn}是等比数列,而{an}不是等比数列.……………………………………14分

18.(本小题满分13分)

   (I)解:设点P、Q、M的坐标分别是P(x1, 0)、Q(0,y1)、M(x, y) 其中x1≤0,y1≤0,依条件可得……………………………………………………………2分

又依

代入(*)式,得……7分

即点M的轨迹方程为

(II)解:设M点的坐标是(4cosα,2sinα)其中0≤α<2π

S四边形OAMB=SOAM+SOBM

仅当时,

四边形OAMB的面积有最大值. …………13分

19.(本小题满分13分)

解:以A为原点,BA所在直线为y轴建立如图所示的平面直角坐标系.

设在t时刻甲、乙两船分别在P(x1, y1) Q (x2,y2).

(I)令,P、Q两点的坐标分别为(45,45),(30,20)

.

即两船出发后3小时时,相距锂.……………………8分

(II)由(I)的解法过程易知:

∴当且仅当t=4时,|PQ|的最小值为20 .………………13分

即两船出发4小时时,相距20 海里为两船最近距离.

20.(本小题满分13分)

   (I)解:取x=1 , y=4则

    

………………6分

  (II)设函数满足其值域为(1,2)

……………………………………………………9分

又任意取x>0, y>0且x≠y则

………………………13分(囿于篇幅,若有其它正确解法请按相应步骤给分.)