A .2 B.4+4 C .4 D.一4 查看更多

 

题目列表(包括答案和解析)

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>


.一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是     (   )

A.B.C.D.

查看答案和解析>>

 

.一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是      (    )

    A.   B.   C.   D.

 

查看答案和解析>>

A(2,-2)点为坐标平面上的一个点,B(a,b)点为坐标平面上的一点,O点为坐标原点,记“∠AOB∈(0,
π2
]
”为事件C.
(1)若将一粒骰子连续抛掷两次(骰子是有六个面的正方体且每个面分别标有1,2,3,4,5,6)得到点数分别记为a,b,求事件C发生的概率;
(2)若a、b均为从区间[0,6]内任取的一个数,记事件D表示“|a-b|<2”,求事件D发生的概率.

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答题

16.解:(I)

       又,∴   ……5分

     (II)

   

17.解:(Ⅰ) 抛掷一次出现的点数共有6×6 = 36种不同结果,其中“点数之和为7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6个结果,

∴抛掷一次出现的点数之和为7的概率为 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列为

ξ

1

2

3

4

P

…… 6分

Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

(Ⅱ) 不限制两人抛掷的次数,甲获胜的概率为:

 P =+ ()2×+ ()4×+ … = .      ………… 12分

 

18.解:解:(1)它是有一条侧棱垂直于底面的四棱锥      … 3分

(注:评分注意实线、虚线;垂直关系;长度比例等)

(2)由(1)得,6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e…………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e………8分

又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

∴二面角6ec8aac122bd4f6e的平面角为6ec8aac122bd4f6e… ………8分

(3)解略。 

19.(I)证明:   ∵  ∴   ∵

是首项为2,公差为1的等差数列.       …………3分

(II)解:=,     …6分

  =.   …7分

(III)证明:

.       …… 9分

    .…………12分

20.解(Ⅰ)∵6ec8aac122bd4f6e过(0,0)    则6ec8aac122bd4f6e

∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

将C点坐标代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

∴椭圆m:6ec8aac122bd4f6e  …………5分

(Ⅱ)由条件D(0,-2)  ∵M(0,t)

1°当k=0时,显然-2<t<2  …………6分

2°当k≠0时,设6ec8aac122bd4f6e

6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

由△>0  可得  6ec8aac122bd4f6e   ①

6ec8aac122bd4f6e

6ec8aac122bd4f6e     6ec8aac122bd4f6e   

6ec8aac122bd4f6e           …………10分

6ec8aac122bd4f6e 

6ec8aac122bd4f6e   ②

∴t>1  将①代入②得   1<t<4

∴t的范围是(1,4)。综上t∈(-2,4)  ………………13分

 

21.解: (1) 依题知,得:的方程为

 即直线的方程是 ………………… 6分

(2)  证明:由(1)得

①由于  ,所以

,所以

②因为  ,

,所以,即

,所以

故当时,有………………… 14分