A., B., 查看更多

 

题目列表(包括答案和解析)

A、B是抛物线C:y2=2px(p>0)上的两个动点,F是焦点,直线AB不垂直于x轴且交x轴于点D.
(1)若D与F重合,且直线AB的倾斜角为
π
4
,求证:
OA
OB
p2
是常数(O是坐标原点);
(2)若|AF|+|BF|=8,线段AB的垂直平分线恒过定点Q(6,0),求抛物线C的方程.

查看答案和解析>>

A、B是直线y=1与函数f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)
(ω>0)图象的两个相邻交点,且|AB|=
π
2

(1)求ω的值;
(2)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-
1
2
,c=3,△ABC
的面积为3
3
,求a的值.

查看答案和解析>>

A、B是直线y=0与函数f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)-1(ω>0)
图象的两个相邻交点,且|AB|=
π
2

(Ⅰ)求ω的值;
(Ⅱ)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-
3
2
,c=3,△ABC
的面积为3
3
,求a的值.

查看答案和解析>>

A、B、C为△ABC的三内角,且其对边分别为a、b、c,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
,且
m
n
=
1
2

(Ⅰ) 求角A;
(Ⅱ) 若a=2
3
,三角形面积S=
3
,求b+c的值.

查看答案和解析>>

A、B两座城市相距100km,在两地之间距A城市xkm的D处建一核电站给A、B两城供电,为保证城市安全,核电站距城市的距离不得少于10km.已知供电费用与“供电距离的平方与供电量之积”成正比,比例系数k=0.25,若A城市供电量为20亿度/月,B城市为10亿度/月.
(1)求x的范围;
(2)把月供电总费用y表示成x的函数;
(3)核电站建在距A城多远,才能使供电总费用最小.

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答题

16.解:(I)

       又,∴   ……5分

     (II)

   

17.解:(Ⅰ) 抛掷一次出现的点数共有6×6 = 36种不同结果,其中“点数之和为7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6个结果,

∴抛掷一次出现的点数之和为7的概率为 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列为

ξ

1

2

3

4

P

…… 6分

Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

(Ⅱ) 不限制两人抛掷的次数,甲获胜的概率为:

 P =+ ()2×+ ()4×+ … = .      ………… 12分

 

18.解:解:(1)它是有一条侧棱垂直于底面的四棱锥      … 3分

(注:评分注意实线、虚线;垂直关系;长度比例等)

(2)由(1)得,6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e…………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e………8分

又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

∴二面角6ec8aac122bd4f6e的平面角为6ec8aac122bd4f6e… ………8分

(3)解略。 

19.(I)证明:   ∵  ∴   ∵

是首项为2,公差为1的等差数列.       …………3分

(II)解:=,     …6分

  =.   …7分

(III)证明:

.       …… 9分

    .…………12分

20.解(Ⅰ)∵6ec8aac122bd4f6e过(0,0)    则6ec8aac122bd4f6e

∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

将C点坐标代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

∴椭圆m:6ec8aac122bd4f6e  …………5分

(Ⅱ)由条件D(0,-2)  ∵M(0,t)

1°当k=0时,显然-2<t<2  …………6分

2°当k≠0时,设6ec8aac122bd4f6e

6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

由△>0  可得  6ec8aac122bd4f6e   ①

6ec8aac122bd4f6e

6ec8aac122bd4f6e     6ec8aac122bd4f6e   

6ec8aac122bd4f6e           …………10分

6ec8aac122bd4f6e 

6ec8aac122bd4f6e   ②

∴t>1  将①代入②得   1<t<4

∴t的范围是(1,4)。综上t∈(-2,4)  ………………13分

 

21.解: (1) 依题知,得:的方程为

 即直线的方程是 ………………… 6分

(2)  证明:由(1)得

①由于  ,所以

,所以

②因为  ,

,所以,即

,所以

故当时,有………………… 14分